

Etat de l'art en Aquaponie

« Base de fonctionnement et conception des circuits recirculés »

9 octobre 2020

DUMAS Victor

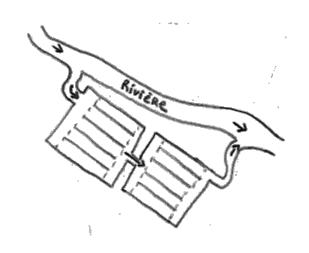
ITAVI – Service Aquaculture

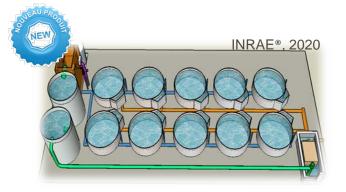
www.itavi.asso.fr

I- Principes généraux

II-Conception de CR

III-La recirculation au quotidien




DE LA DÉRIVATION À LA RECIRCULATION

Systèmes d'élevage

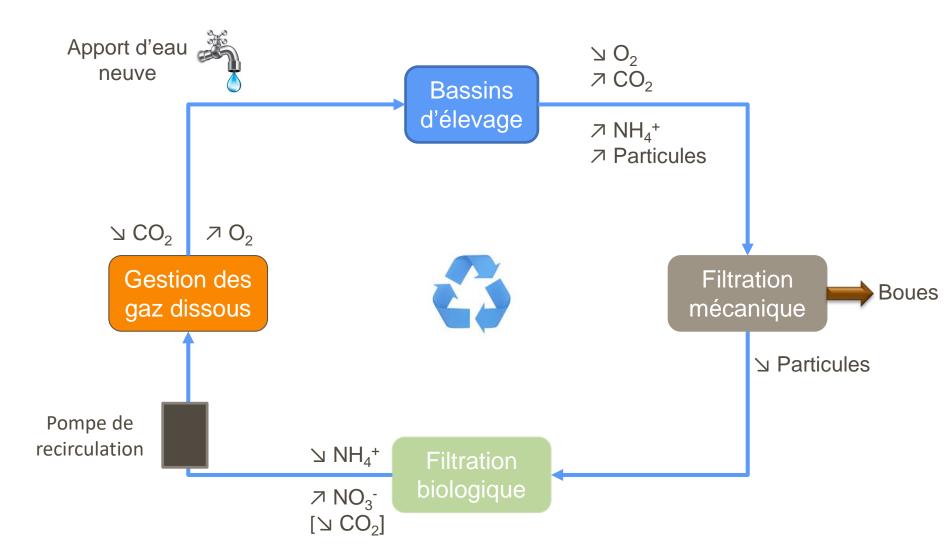
Système MAJORITAIRE en eau douce

En circuit ouvert



Circuit recirculé avec bio-filtration = nouvelle approche de système d'élevage

« Tout ce qui n'est pas traité ou rejeté s'accumule »



- bio-filtration des dissous (NH₄+)
- filtration des solides (MES)
- gestion des gaz (O₂, CO₂)
- gestion du parasitisme et des pathologies

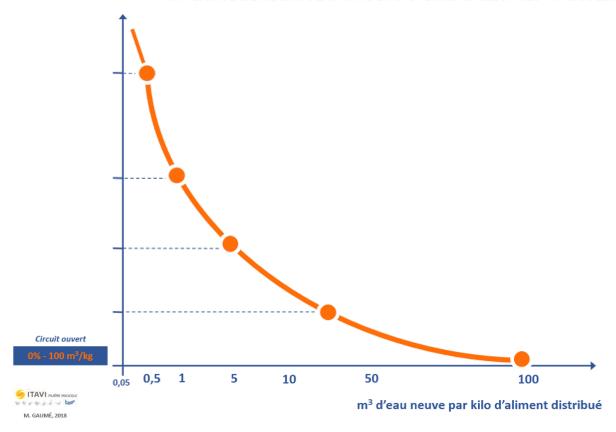
Les différents compartiments d'un circuit recirculé aquacole.

La grandeur « m³ d'eau par kg d'aliment »

un repère pour la compréhension des systèmes d'élevages piscicoles

« m³ d'eau par kg d'aliment »

Débit d'eau neuve (en m³/j)


Quantité d'aliment distribuée (par jour)

Plus la valeur est faible, plus le systèmes est « fermé », ou encore plus sont « taux de recirculation » est important (en %)

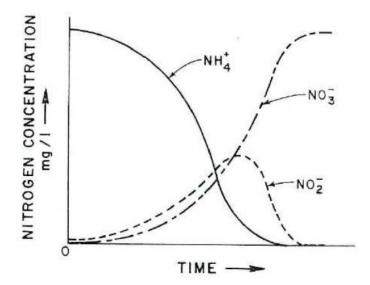
INTENSITÉ DE RECIRCULATION DES SYSTÈMES D'ÉLEVAGES PISCICOLES

II - Conception de circuit recirculé

« BIOLFITRATION » = le point crucial

Nitrification bactérienne: équations

$$2 \text{ NH}_4^+ + 3 \text{ O}_2 \rightarrow 2 \text{ NO}_2^- + 4 \text{ H}^+ + 2 \text{ H}_2\text{O}$$
(*Nitrosomonas*)


$$2 \text{ NO}_2^- + \text{ O}_2 \rightarrow 2 \text{ NO}_3^-$$
(Nitrobacter)

- acidification du milieu : H+
- consommation d'O₂
- intermédiaire toxique pour les

poissons: les nitrites (NO₂-)

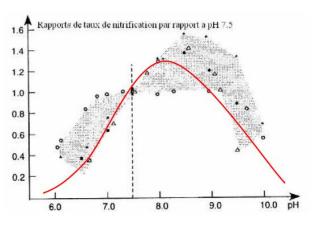
production de nitrates (NO₃-)

MISE EN PLACE D'UN FILTRE BIOLOGIQUE = 40 JOURS

La nitrification bactérienne : facteurs de variation

■ Température :

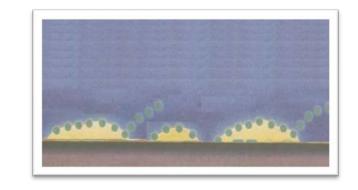
- optimum 30 à 38°C


≠ optimum poissons

• pH :

- optimum 7,5 à 8,2
- eaux acides = correction du pH (bicarbonate, chaux ?, soude ? ...)

- Surface de fixation :
 - Caractéristique des supports utilisés m²/m³
 - Plus ce ratio est élevé, plus le volume du biofiltre diminue
- Rapport C/N et matière organique : compétitions avec bactéries hétérotrophes


Biofilm: la compétition bactérienne

Sur la surface offerte par les médias du biofiltre ...

... des <u>bactéries autotrophes</u> transforment l'ammoniaque (NH_4^+) en nitrites (NO_2^-) puis en nitrates (NO_3^-) ...

Temps de génération : 1 à 2 semaines

... et des <u>bactéries hétérotrophes</u> transforment la matière organique en suspension.

Temps de génération : quelques heures !

Filtration mécanique des MES :

• point central du bon fonctionnement du biofiltre

Objectif "zéro MES" en entrée du biofiltre !

Gestion des gaz:

Oxygène O_2 :

- Evaluation de TOUS les besoins : poissons + bactéries + plantes ...
- ATTENTION : [O₂ dissous dans l'eau] = f(température) !

Dioxyde de Carbone CO₂:

- Ne pas sous estimer la production de CO₂
- OBLIGATION de dégazage en recirculation
- Biofiltre sur lit fluidisé = filtration biologique + DEGAZAGE

Bases du dimensionnement et chiffres clefs : Dimensionnement filtration mécanique et biologique

Capacité de production annuelle

Plan de production

Biomasse maximale en élevage

Indice de conversion (Ic) Taux de rationnement

Quantité journalière maximale d'aliment distribué

Quantité de MES produite = environ 25 à 30 % * quantité d'aliment distribuée

Type de filtration biologique et supports bactériens

Dimensionnement de la filtration des MES et choix techniques

Exemple du Pilote RATHO

2 tonnes

700 kg

Ic = 1Taux de rationnement = 2%.j⁻¹

10,5 kg

Lit fluidisé 850 m².m⁻³

3 à 4 kg d'aliment.m⁻³ de ce support *

3,45 m³ d'anneaux

* En lien avec la capacité de transformation de l'ammoniaque en nitrate

Grandeurs caractéristiques des systèmes recirculés

- 1) Débit circulant m³.h⁻¹
- 2) Quantité d'eau neuve par kg d'aliment distribué en m³.kg⁻¹
- 3) Taux de renouvellement journalier du système en %.j-1
- 4) Temps de séjour de l'eau dans le filtre biologique

. . .

Le service aquaculture de l'ITAVI peut réaliser des prédimensionnements

III – La recirculation au quotidien

LA RECIRCULATION AU QUOTIDIEN

1

Gestion zootechnique et qualité d'eau de base :

Alimentation, morts, débits circulant, température, O2, pH

2

Suivi des paramètres de qualité d'eau :

 NH_4^+ , NO_2 , NO_3 , pH

3

Suivi de l'état sanitaire des animaux :

Parasites externes, traitements sanitaires

4

Maintenance du parc matériel :

Entretien pompes, filtre mécanique, décanteur

5

Suivi des performances zootechniques :

Poids moyen, indice de conversion, surveillance de l'ingéré

* Quotidien lors des 40 jours de phase de lancement du biofiltre

Fréquence

Quotidien

Hebdomadaire à bihebdomadaire *

Hebdomadaire à bihebdomadaire

Hebdomadaire à mensuel

Toutes les 3 semaines

LA RECIRCULATION AU QUOTIDIEN

- Sécurisation électrique (groupe électrogène)
- Doublage matériel critique (pompe recirculation)
- Transmission téléphonique des alarmes
- Bonne gestion des stocks « d'intrants critiques » (O₂, correcteur pH, aliment)

Arrêt de la pompe de recirculation

=

l'ensemble du stock peut mourir en quelques 10^{aines} de minutes ... !!!

Merci de votre attention

ITAVI Service Aquaculture 28 rampe Bouvreuil **76000 ROUEN**

Tel.: 09 51 36 10 60 www.itavi.asso.fr

tocqueville@itavi.asso.fr

https://projetapiva.wordpress.com/

